Carbon dioxide and oxygen fluxes in the Southern Ocean: Mechanisms of interannual variability
نویسندگان
چکیده
[1] We analyze the variability of air-sea fluxes of carbon dioxide and oxygen in the Southern Ocean during the period 1993–2003 in a biogeochemical and physical simulation of the global ocean. Our results suggest that the nonseasonal variability is primarily driven by changes in entrainment of carbon-rich, oxygen-poor waters into the mixed layer during winter convection episodes. The Southern Annular Mode (SAM), known to impact the variability of air-sea fluxes of carbon dioxide, is also found to affect oxygen fluxes. We find that El Niño–Southern Oscillation (ENSO) also plays an important role in generating interannual variability in air-sea fluxes of carbon and oxygen. Anomalies driven by SAM and ENSO constitute a significant fraction of the simulated variability; the two climate indices are associated with surface heat fluxes, which control the modeled mixed layer depth variability. We adopt a Lagrangian view of tracers advected along the Antarctic Circumpolar Current (ACC) to highlight the importance of convective mixing in inducing anomalous air-sea fluxes of carbon dioxide and oxygen. The idealized Lagrangian model captures the principal features of the variability simulated by the more complex model, suggesting that knowledge of entrainment, temperature, and mean geostrophic flow in the mixed layer is sufficient to obtain a first-order description of the large-scale variability in air-sea transfer of soluble gases. Distinct spatial and temporal patterns arise from the different equilibration timescales of the two gases.
منابع مشابه
Interannual variability of air-sea O2 fluxes and the determination of CO2 sinks using atmospheric O2/N2
[1] Motivated by the use of atmospheric O2/N2 to determine CO2 sinks under the assumption of negligible interannual variability in air-sea O2 fluxes, we examine interannual fluctuations of the global air-sea flux of O2 during the period 1980 – 1998 using a global ocean circulation and biogeochemistry model along with an atmospheric transport model. It is found that both the El Niño/Southern Osc...
متن کاملImpact of variable air-sea O2 and CO2 fluxes on atmospheric potential oxygen (APO) and land-ocean carbon sink partitioning
A three dimensional, time-evolving field of atmospheric potential oxygen (APO ∼O2/N2+CO2) was estimated using surface O2, N2 and CO2 fluxes from the WHOI ocean ecosystem model to force the MATCH atmospheric transport model. Land and fossil carbon fluxes were also run in MATCH and translated into O2 tracers using assumed O2:CO2 stoichiometries. The modeled seasonal cycles in APO agree well with ...
متن کاملInterannual variations in continental - scale net carbon exchange and sensitivity to observing networks estimated from atmospheric CO 2 inversions for the period 1980 to 2005
[1] Interannually varying net carbon exchange fluxes from the TransCom 3 Level 2 Atmospheric Inversion Intercomparison Experiment are presented for the 1980 to 2005 time period. The fluxes represent the model mean, net carbon exchange for 11 land and 11 ocean regions after subtraction of fossil fuel CO2 emissions. Both aggregated regional totals and the individual regional estimates are accompa...
متن کاملVariability of global net sea–air CO2 fluxes over the last three decades using empirical relationships
The interannual variability of net sea–air CO2 flux for the period 1982–2007 is obtained from a diagnostic model using empirical subannual relationships between climatological CO2 partial pressure in surface seawater (pCO2SW) and sea surface temperature (SST), along with interannual changes in SST and wind speed. These optimum subannual relationships show significantly better correlation betwee...
متن کاملTerrestrial mechanisms of interannual CO2 variability
[1] The interannual variability of atmospheric CO2 growth rate shows remarkable correlation with the El Niño Southern Oscillation (ENSO). Here we present results from mechanistically based terrestrial carbon cycle model VEgetation-Global-Atmosphere-Soil (VEGAS), forced by observed climate fields such as precipitation and temperature. Land is found to explain most of the interannual CO2 variabil...
متن کامل